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Enantioselective Entry into Benzoxabicyclo[2.2.1]heptyl Systems via Enzymatic
Desymmetrization: Toward Chiral Building Blocks for Lignan Synthesis
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Abstract: The meso diacetate, 9, available in seven steps from piperonal, is efficiently
desymmetrized with preferential cleavage of the R-arm-acetate under catalysis by porcine
pancreatic lipase in 10% DMSO-phosphate buffer, pH 8. The resulting monoacetate 12,
a potentially useful chiral building block for the synthesis of derivatives of the
Podophyllum lignans, is obtained in good chemical yield (66-83%) and in high optical
yield (95% ee) on a multigram SCﬂle-Copyright © 1996 Elsevier Science Ltd

Semisynthetic derivatives of the aryl tetralin lignan (-)-podophyllotoxin (1), such as etoposide (2)! and
teniposide (3), are important chemotherapeutic agents. Etoposide has displayed remarkable efficacy as a single
agent in the treatment of small cell lung cancer, testicular cancer, Hodgkin's and non-Hodgkin's lymphoma,
several leukemias and Kaposi's sarcoma (the tumor most closely associated with AIDS).24 More recently,
etoposide has been identified as a very good candidate for the treatment of life-threatening cytomegalovirus
(CMV) infections.’
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Against the backdrop of etoposide's superlative clinical performance, podophyllotoxin has become an
important synthetic target.6 In recent years, the synthetic focus has been upon asymmetric approaches to the
podophyllotoxin skeleton. Meyers and coworkers recorded the first enantioselective synthesis of (-)-
podophyllotoxin wherein all stereochemical information was elegantly derived from a chiral oxazoline.’® Bush
and Jones recently described a second auxiliary-mediated approach to (-)-1.70.¢  Vandewalle's group has
reported an asymmetric approach to (-)-epipodophyllotoxin, the C4-epimer of 1.7

We have been particularly interested in developing an enantioselective approach to the podophyllotoxin
skeleton which is modular in ring E, so as to provide access to heretofore unavailable ring E-modified analogs of
the natural product. Hence, we envisioned the introduction of ring E late in the synthesis (Scheme 1). We also
wished to introduce asymmetry catalytically, via an enzyme-mediated desymmetrization of an advanced meso
synthetic intermediate.8 We report herein our progress toward achieving this latter goal.

Scheme 1 Retrosynthetic Analysis:  Exploiting Co Symmetry
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An efficient route to appropriate meso benzoxobicyclo[2.2.1]heptyl derivatives beginning from piperonal
has been developed (Scheme 2). The first two steps, the regiospecific bromination and the acetalization of
piperonal to give 4 are known transformations, and proceed in very good yield, as reported (Scheme 1).9 The
hydroxymethylation of 4 was examined under a variety of conditions. Halogen-metal exchange (n-butyllithium)
was followed by addition of the electrophile at low temperature. Although 5 could be obtained with DMF
(followed by NaBH4) and formaldehyde gas as electrophiles, solid paraformaldehyde proved to be the
electophile of choice, in terms of both yield and reproducibility.
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The key step involves the in situ generation of 5,6-(methylenedioxy)isobenzofuran!0-12 from 5 and its
trapping with a suitable Diels-Alder dienophile. By employing dimethyl acetylenedicarboxylate (DMAD) as both
dienophile and solvent, excellent yields of Diels-Alder product 6 are reproducibly obtained, even on a 20 g scale
(90%). Excess DMAD is reclaimed by distillation and reused. Catalytic hydrogenation gives the desired cis-
vicinal diester 7 quantitatively. The dimethyl ester 7 may be transformed into several related meso compounds,
8-11, chosen as potential substrates for enzymatic desymmetrizations.

Our choice of enzymes/meso substrates was guided by available information in the literature. Several
enzymes, including horse liver alcohol dehydrogenase (HLADH),13 lipase GC (Geotrichum candidum)'4 and
pig liver esterase (PLE)!5 are known to accept simpler meso compounds of the bicyclo[2.2.1Jheptyl variety as
substrates. Bis-(2-phenyl)acetate 10 was chosen with penicillin acylase (PA) in mind, as this hydrolase cleaves
phenacyl esters or amides of great structural variety.16 Dibenzoate 11 was regarded as a potential chymotrypsin
A (CA) substrate.17 Diol 8 and diesters 7, 9-11 were all candidates for lipase-mediated desymmetrization.

We have now screened the five substrate candidates 7-11, along the lines suggested above. Several
variables have been examined including: buffer, pH, temperature, wgt. equivalents of enzyme, enzyme
stabilizers, percent and nature of organic cosolvents (see Table for several examples). Unfortunately, HLADH
fails to accept diol 8 as substrate under a large variety of conditions, including those of Jones!32 and of
Klibanov.13b Indeed, in several cases, the enzymes examined (e.g. HLADH, PA, CA) did not accept these
relatively large, bridged, tetracyclic compounds as substrates at all. On the other hand, matches were found for
both diol 8 and diacetate 9. Both lipase P and lipase GC slowly acetylate diol 8 in vinyl acetate. However, the
enantioselectivity [29% ee favoring the (R)-arm for both enzymes] is not synthetically useful.

Diacetate 9 proved to be the best unnatural substrate (see Table). Three enzymes [PLE, rabbit liver
esterase (RLE), and porcine pancreatic lipase (PPL)] catalyze its hydrolysis. Enantiomeric excesses range from
unacceptable (18%, RLE), to modest (33%, PLE), to outstanding (95%, PPL). In the latter case, a 66% yield
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(95% ee) of enzymatically desymmetrized monoacetate can be obtained. This corresponds to an 83% yield based
on recovered diacetate. The reaction occurs reproducibly in a matter of 1-3 h in phosphate buffer, pH 8 with
10% DMSO as cosolvent. The reaction is easily performed on a multigram scale (entry 8). Approximately 13

weight equivalents of enzyme are employed, but PPL currently sells for 10¢/gram from Sigma.
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Enzymatic Desymmetrizations of Meso Diacetate 9
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50 mM KPO,,
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pHS
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pH 8.5
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50 mM KPO,,
pH8

25 h

2
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0.05

22
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52%

14%

23%

11%

46%

63%

66%

33%

5%

18%

10%

n.d.

89%

95%

47%

20%

20%

15%

5%

21%

All diol

25%

47%

27%

5%

derived 12, its Mosher ester 13a, was recrystallized and its X-ray crystal structure determined:

H
H
QA

(A) Other buffers (pH's) giving lower ylelds (10% DMSO as cosolvent): phosphate, pH 7; borate, pH's 8.5 & 9;

pyrophosphate, pH 9; imidazole, pH 7.

(B) Increasing the temperature to 35-50°C also gave lower yields of 12

For all entries in the Table, enantiomeric excesses were determined by 500 MHz IH-NMR analysis of the
diastereomeric esters derived from (R)-Mosher chloride.1® To determine the absolute stereochemistry of PPL-

13a

CF3

Ph

The crystal structure reveals that all five enzymes (PPL, PLE, RLE, lipase P and lipase GC) act
preferentially on the R-arm of the meso diacetate 9. Interestingly, this stercoselectivity is opposite to that
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predicted by the most general model for PPL hydrolyses yet developed.1? However, that model is based upon
simple acyclic or monocyclic substrates that had been described by others.20 Indeed, to the best of our
knowledge, no enzymatic transformations of a tetracyclic benzoxabicyclo[2.2.1]heptyl derivatives such as 9
have been heretofore reported. Studies directed at the synthesis of unnatural lignans from chiral building block
12 are in progress and will be reported in due course.
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